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Ground-state clusters of two-, three-, and four-dimensionalÁJ Ising spin glasses
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A huge number of independent true ground-state configurations is calculated for two-, three- and four-
dimensional6J spin-glass models. Using the genetic cluster-exact approximation method, system sizes up to
N5202,83,64 spins are treated. A ‘‘ballistic-search’’ algorithm is applied, which allows even for large system
sizes to identify clusters of ground states that are connected by chains of zero-energy flips of spins. The number
of clustersnC diverges withN going to infinity. For all dimensions considered here, an exponential increase of
nC appears to be more likely than a growth with a power ofN. The number of different ground states is found
to grow clearly exponentially withN. A zero-temperature entropy per spin ofs050.078(5)kB ~2D!, s0

50.051(3)kB ~3D!, respectively,s050.027(5)kB ~4D! is obtained.

DOI: 10.1103/PhysRevE.63.016106 PACS number~s!: 05.50.1q, 75.10.Nr, 75.40.Mg
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I. INTRODUCTION

Spin-glass models@1# with discrete distributions of the
interactions are believed to exhibit a rich ground-stateT
50) landscape. So far only for very small systems ofN
543 spins the complete landscape has been analyzed@2#. In
this paper a new ‘‘ballistic search’’ algorithm is presente
which allows the treatment of much larger systems. As
application, two-, three-, and four-dimensional Edward
Anderson6J spin glasses are investigated. They consis
N spinss i561, described by the Hamiltonian

H[2(
^ i , j &

Ji j s is j . ~1!

The sum runs over all pairs of nearest neighbors. T
spins are placed ond52,3,4-dimensional simple~square/
cubic/hypercubic! lattices of linear sizeL with periodic
boundary conditions in all directions. Systems w
quenched disorder of the interactions~bonds! are considered
Their possible values areJi j 561 with equal probability. To
reduce the fluctuations, a constraint is imposed, such
(^ i , j &Ji j 50. Since the Hamiltonian exhibits no extern
field, reversing all spins of aconfiguration~also calledstate!
$s i% results in a state with the same energy, called thein-
verseof $s i%. In the following, a spin configuration and it
inverse are regarded as one single state.

Since the ground-state problem belongs to the class
NP-hard tasks@3#, only algorithms with exponentially in-
creasing running time are available. Currently it is possi
to obtain a finite number of true ground states per realiza
up toL556 ~2D!, L514 ~3D!, or L58 ~4D! using a special
optimization algorithm@4#. For the6J model, the number of
existing ground statesnGS per realization, called theground-
state degeneracy, grows exponentially withN. The reason is,
that there are usuallyfreespins, i.e., spins that can be flippe
without changing the energy of the system. A state witf
independent free spins allows at least for 2f different con-
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figurations of the same energy. Currently, it seems to
impossible to obtain all ground states for system sizes la
thanN553. To overcome this problem in this work allclus-
ters of ground states are calculated. A cluster is defined
the following way: Two ground-state configurations a
calledneighborsif they differ only by the orientation of one
free spin. All ground states that are accessible through
neighbor relation are defined to be in the same cluster. T
means, one can travel through the ground states of one c
ter by flipping only free spins. With the method present
here, theballistic search~BS!, it is not only possible to ana
lyze large ground-state clusters, it also allows to obtain
cluster landscape when having only a small subset of
ground states available. Additionally, one can estimate
size of the clusters from this small number of sample sta
as shown later on.

The number of clusters as a function of system size is a
of interest on its own: for the infinitely-ranged Sherringto
Kirkpatrik ~SK! Ising spin glass a complex configuration
space structure was found using the replica-symme
breaking mean-field~MF! scheme by Parisi@5#. If the MF
scheme is valid for finite-dimensional spin glasses as w
then the number of ground-state clusters must diverge w
increasing system size. On the other hand the droplet-sca
picture@6–9# predicts that basically one ground-state clus
~and its inverse! dominates the spin-glass behavior. To a
dress this issue a cluster-analysis was performed for s
systems of one sizeL54 in three dimensions@2#. But an
analysis of the size dependence of the number of cluster
even an investigation of two-/four-dimensional spin glas
has not been carried out before.

By the way, with the method presented here it is possi
to calculate the entropyS0[@ ln nGS#JkB even for systems ex
hibiting a hugeT50 degeneracy. The symbol@ #J denotes
the average over different realizations of the bonds. Since
number of free spins is extensive,s0[S0 /N.0 holds for the
6J spin glass. For three-dimensional spin glasses, in@10#
the ground-state entropy was estimated by computing e
free energies for systems of size 4343M (4<M<10). In
@11# a Monte-Carlo simulation and in@12,13# multicanonical
simulations were used to calculates0. Results for the
ground-state entropy of two dimensional sys-
©2000 The American Physical Society06-1
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TABLE I. For each system sizeL (d53): numbernR of realizations, numberr of independent runs pe
realization, average numberC of clusters per realization, average ground-state degeneracynGS and the
average entropy per spins0.

L nR r C nGS s0 /kB

3 1000 1000 1.79~3! 2.6(2)3101 0.0842~16!

4 1000 104 2.58~6! 2.1(1)3102 0.0627~09!

5 100 105 4.3~3! 1.3(4)3104 0.0519~18!

5 1000 3000 3.8~1! 2.1(3)3104 0.0560~08!

6 1000 5000 6.6~3! 1.3(3)3107 0.0535~05!

8 192 23104 24~2! 1.8(1.7)31016 0.0520~07!
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tem were obtained with similar methods: numerically ex
calculations of finite systems@14,15#, Monte-Carlo simula-
tions @11,16# and analytics methods@17–19#. For D54 the
author is not aware of results for the ground-state entrop

The paper is organized as follows: First the procedu
used in this paper are presented. Then the results for
number of clusters and the number of ground states as f
tion of N in two, three, and four dimensions are shown. T
last section summarizes the results.

II. ALGORITHMS

At first the optimization method applied here is state
Then, for illustrating the problem, a simple method for co
structing clusters of ground states is explained. In the m
part the BS method for identifying clusters in systems exh
iting a huge degeneracy is presented and how this techn
can be applied to estimate the size of these clusters is
plained.

The basic method used here for the calculation of sp
glass ground states is the cluster-exact approximation~CEA!
algorithm @20#, which is a discrete optimization method d
signed especially for spin glasses. In combination with a
netic algorithm@21,22# this method is able to calculate tru
ground states@4#. Using this technique one does not encou
ter ergodicity problems or critical slowing down like in a
gorithms that are based on Monte Carlo methods. Gen
CEA was already utilized to examine the ground states
two-, three- and four dimensional6J spin glasses by calcu
lating a small number of ground states per realization@4#,
while in this paper the emphasize is on the study of
cluster landscape. Therefore, many ground states per ran
sample have to be obtained. Since the algorithm calcul
only one independent ground state per run, a much la
computation effort was necessary.

Once many ground states are calculated, the strai
forward method to obtain the cluster landscape works
following way: The construction starts with one arbitra
ground state. All its neighbors are added to the cluster. Th
neighbors are treated recursively in the same way: All th
neighbors that are yet not included in the cluster are add
After the construction of one cluster is completed the c
struction of the next one starts with a ground state, which
not been visited so far.

The construction of the clusters needs only linear co
puter time as function ofnSG @O(nSG)#, similar to the
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Hoshen-Kopelman technique@23#, because each ground sta
is visited only once. Unfortunately the detection of all neig
bors, which has to be performed at the beginning, is
O(nSG

2 ) since all pairs of states have to be compared. E
worse, all existing ground states must have been calcul
before. As, e.g., a 53 system may exhibit already more tha
105 ground states, this algorithm is not suitable.

The basic idea of the ballistic-search algorithm is to us
test, which tells whether two ground states are in the sa
cluster. The test works as follows: Given two independ
replicas$s i

a% and $s i
b% let D be the set of spins, which ar

different in both states:D[$ i us i
aÞs i

b%. Now BS tries to
build a path of successive flips of free spins, which lea
from $s i

a% to $s i
b% while using only spins fromD. In the

simplest version iteratively a free spin is selected random
from D, flipped, and removed fromD. This test does not
guarantee to find a path between two ground states tha
long to the same cluster, since it may depend on the orde
spins are selected whether a path is found or not. It only fi
a path with a certain probability that depends on the size
D. It turns out that the probability decreases monotonica
with uDu. For example forN583 the method finds a path in
90% of all cases if the two states differ by 34 spins. Mo
analysis can be found in Ref.@24#.

The algorithm for the identification of clusters using B
works as follows: the basic idea is to let a ground state r
resent that part of a cluster that can be found using BS w
a high probability by starting at this ground state. If a clus
is large it has to be represented by a collection of states, s
that the whole cluster is ‘‘covered.’’ For example a typic
cluster of a 83 spin glass consisting of 1016 ground states is
usually represented by only some few ground states~e.g.,
two or three!. A detailed analysis of how many representin
ground states are needed as a function of cluster and sy
size can be found in Ref.@24#. The algorithm holds in
memory a set of clusters consisting each of a set of re
senting configurations. At the beginning the cluster se
empty. Iteratively all available ground states$s i% are treated:
For all representing configurations the BS algorithm tries
find a path to the current ground state or to its inverse. If
path is found, a new cluster is created, which is represen
by the actual configuration treated. If$s i% is found to be in
exactly one cluster nothing special happens. If$s i% is found
to be in more than one cluster all these clusters are me
into one single cluster, which is now represented by
6-2
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GROUND-STATE CLUSTERS OF TWO-, THREE-, AND . . . PHYSICAL REVIEW E63 016106
union of the states, which have represented all clusters
fected by the merge.

The BS identification algorithm has some advantages
comparison with the straight-forward method: since ea
ground-state configuration represents many ground sta
the method does not need to compare all pairs of states. E
state is compared only to a few number of representing c
figurations. Thus, the computer time needed for the calc
tion grows only a little bit faster thanO(nSGnC) @24#, where
nC is the number of clusters, which is much smaller th
nSG. Consequently, large sets of ground states, which ap
already for small system sizes likeN553, can be treated
Furthermore, the ground-state cluster landscape of e
larger systems can be analyzed, since it is sufficient to
culate a small number of ground states per cluster. One
to ensure that really all clusters are found, which is sim
done by calculating enough states, but this is still only a t
fraction of all ground states@24#. Also one has to be sure tha
all clusters are identified correctly. This is not guarante
immediately, since for two ground states belonging to
same cluster there is just a certain probability that a path
free flipping spins connecting them is found. But this pos
no problem, because once at least one state of a cluste
been found, many more states can be obtained easily by
performing aT50 Monte-Carlo simulation starting with th
initial state. By increasing the number of states availa
more and more, the probability that all clusters have b
identified correctly very quickly approaches one. Detai
tests can be found in Ref.@24#. For all results presented her
the number of available ground states has been increase
far, such that each cluster has be identified correctly wit
probability of more than 0.99.

Once all ground states are grouped into clusters, t
sizes have to be obtained to calculate the total numbe
states and the entropy. If only some ground states per clu
are available, the size cannot be evaluated by simply co
ing the states. Then a variant of BS is used to perform
task. Given a state$s i%, free spins are flipped iteratively, bu
each spin not more than once. During the iteration, additio
free spins may be generated or destroyed. When there a
more free spins left, the process stops. One counts the n
ber of spins that has been flipped. By averaging over sev
tries and several ground states of a cluster one obtain
average value, denoted withl max. It can be shown that this
quantity represents the sizenC of a cluster very well and is
more accurate than simpler measures such as the ave
number of static free spins. By analyzing all ground states
small systems, anC52a l max behavior is found, witha
P@0.85,0.93# depending on the dimension of the syste
These results will be exposed in the next section. A sim
method for estimating the cluster sizes is presented in R
@25#. There three heuristic fitting parameters are needed,
they are universal for all system dimensions.

III. RESULTS

First, the results for three-dimensional systems are giv
In the second and third part, two- and four-dimensional s
glasses are investigated.
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In 3D, for system sizesL53,4,5,6,8 large numbers o
independent ground states were calculated using gen
CEA. Usually 1000 different realizations of the disord
were considered. Table I shows the number of realizati
nR and the number of independent runsr per realization for
the different system sizesL. For the small systems sizes~and
for 100 realizations ofL55) many runs plus an additiona
local search were performed to calculateall ground states.
For the larger sizesL55,6,8 the number of ground states
too large, so it is only possible to try to calculate at least o
ground state per cluster. It is highly probable that all clust
were detected, except forL58, where for about 25% of the
realizations some small cluster may have been missed@24#.
This problem is not related to the design of the ballist
search method. It is due to the enormous computationa
fort needed for generating the ground states of the larg
systems, so only a restricted number of runs can be
formed. Since the probability that a certain cluster is found
a run of the genetic CEA algorithm decreases with the size

FIG. 1. NumbernC of ground-state clusters as a function
system sizeN for d53. The inset shows the same data using
double-logarithmic scale. Lines are a guide to the eyes only.

FIG. 2. Average sizeV of a cluster (d53) as a function of
average dynamic numberl max of free spins~see text! for three-
dimensional6J spin glasses of system sizesL53,4,5, where all
ground have been obtained. AV520.9l max dependence is found, in
dicated by a line.
6-3



rs
fo

th
st
ss
be

f
he
le

ize
t
lo
e

lu
b

o
ic
In
n

g

th
s
ed
-

in

y

ic
be

b
te
T

-

nd

ct,
for

A

ably
est
the

t
the
ys-

ree
rror

or
nt
10
nt

r
the
l

es
one
ters

he
lays

ALEXANDER K. HARTMANN PHYSICAL REVIEW E 63 016106
the cluster@26#, ground states belonging to small cluste
occur only rarely. Even by doubling the number of runs
L58, the fraction of systems with some clusters missed
estimated to fall only to 20%.

The ground states were grouped into clusters using
ballistic-search algorithm. The number of states per clu
was sufficiently large, so that only with a probability of le
than 1022 some configurations from a large cluster may
mistaken for belonging to different clusters@24#. The aver-
age numbernC of clusters is shown in the fourth column o
Table I. In Fig. 1 the result is shown as a function of t
numberN of spins. By visualizing the results using a doub
logarithmic plot ~see inset! one realizes thatnC seems to
grow faster than any power ofN. The larger slope in the
linear-logarithmic plot for small systems may be a finite-s
effect. Additionally, forL58 there is a large probability tha
some small clusters are missed, explaining the smaller s
there. In summary, our data favor an exponential increas
nC(N).

To calculate the ground-state entropy, the size of the c
ters have to be known. For the small systems, this can
done just by counting. For larger system sizes it is not p
sible to obtain all states, so the method using the dynam
numberl max of free spins is applied, as explained before.
Fig. 2 the cluster size for small systems is shown as a fu
tion of l max with a logarithmically scaled y axis. A
nC52a l max dependence is visible very well, yieldin
a50.90(5).

By summing up all cluster sizes for each realization
ground-state degeneracynGS is obtained. Its average i
shown in the fifth column of the table. The quantity is plott
in Fig. 3 as a function ofN. The exponential growth is ob
vious.

The result for the average ground-state entropy per sp
shown in the last column of Table I. The number forL54 is
within two standard deviations ofs050.073(7)kB , which
was found in Ref.@2#, where 200 realization were treated. B
fitting a function of the forms0(L)5s0(`)1a* L2b a value
of s0(`)50.0505(6)kB is obtained. In Ref. @10#
s050.04(1)kB was estimated for systems with period
boundary conditions only in two directions, which may
the reason for the smaller result. The value found by
Monte-Carlo simulations050.062kB @11# for systems of size
203 is much larger. The deviation is presumably caused
the fact that it was not possible to obtain true ground sta
for systems of that size, i.e., too many states were found.
results from multicanonical simulationss050.046(2)kB @12#
and s050.0441(5)kB @13# are a little bit lower than the re
01610
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sults obtained here. This may indicate that not all grou
states are found using that simulation procedure.

The result for the entropy does not suffer from the fa
that some ground-state clusters may have been missed
L58: the probability for finding a cluster using genetic CE
grows with the size of the cluster@26#. This implies that the
clusters, which may have been missed, are consider
small, so the influence on the result is negligible. The larg
source of uncertainty is caused by the assumption, that
size of a cluster grows like 2a l max. The error of the constan
a enters linearly the result of the entropy. To estimate
influence of this approximation, for the three smallest s
tems sizes, where the entropy was obtained exactly,s0 was
calculated using estimated cluster sizes as well. For all th
cases the result was equal to the exact values within e
bars. The final result quoted here iss050.051(1).

Now we concentrate on two-dimensional systems. F
system sizesL55,7,10,14,20 large numbers of independe
ground states were calculated using genetic CEA, up to4

runs per realization were performed. Usually 1000 differe
realizations of the disorder were considered, except foL
520, where only 96 realizations could be treated. For
small systems sizesL55,7, many runs plus an additiona
local search were performed to calculateall ground states.
For the larger sizesL510,14,20 the number of ground stat
is too large, so we restrict ourselves to calculate at least
ground state per cluster. The probability that some clus

FIG. 3. NumbernGS of ground states (d53) as a function of
system sizeN. The number of states grows exponentially with t
number of spins. Line is a guide to the eyes only. The inset disp
the ground-state entropy per spin as a function ofL. The line shows
a fit extrapolatings0 to the infinite system, which yieldss0(`)
50.0505(6)kB .
r
TABLE II. For each system sizeL (d52): numbernR of realizations, numberr of independent runs pe
realization, average numberC of clusters per realization, average ground-state degeneracynGS, and the
average entropy per spins0.

L nR r C nGS s0 /kB

5 1000 1000 1.79~3! 3.2(2)3101 0.1041~17!
7 1000 104 2.58~6! 5.4(5)3102 0.0916~13!
10 1000 104 4.3~3! 7.6(4)3105 0.0868~10!
14 1000 3000 3.8~1! 1.5(9)31012 0.0863~07!
20 96 5000 6.6~3! 5.1(4.9)31025 0.0854~20!
6-4
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GROUND-STATE CLUSTERS OF TWO-, THREE-, AND . . . PHYSICAL REVIEW E63 016106
were missed is higher for two dimensions than for thed
53 case, because the ground-state degeneracy grows
with the system size; for small systems sizesL<10, it is
again highly probable that all clusters have been obtain
For L514 some small clusters may have been missed
about 30% of all realizations, while forL520 this fraction
raises even to 60%. This is due to the enormous comp
tional effort needed for the largest systems. For theL520
realizations a total computing time of more than 2 CPU ye
was consumed on a cluster of Power-PC processors run
with 80 MHz.

The results ford52 are shown in Table II. The number o
clustersnC as a function of system size is plotted in Fig.
Again it is more likely thatnC has exponential growth rathe
than algebraic growth.

Similar to thed53 case, the cluster sizesV can be ob-
tained directly for small systems. For estimatingV in larger
systems, again thea parameter has been obtained. The a
erage size of a cluster as a function ofl max is shown in Fig.
5 resulting ina50.85(5). With this parameter the ground
state degeneracy as a function ofN can be calculated, se
Fig. 6. Similar to thed53 case, the exponential growth
obvious. The resulting entropy is shown in the inset. By
finite-size extrapolation to the infinite system, a value ofs0
50.078(5) is obtained. In Ref.@14# s0'0.075kB was esti-
mated by using a recursive method to obtain numeric
exact free energies up toL518. The result ofs0'0.07kB
found in Ref.@15# is even slightly lower. The value found b
a Monte Carlo simulations0'0.1kB @11# for systems of size
802, is much larger. The deviation is presumably caused
the fact that it was not possible to obtain true ground sta
for systems of that size, i.e., too many states were visi
Recent results are more accurate; by applying the rep
Monte Carlo method@16# a value ofs050.071(7) was ob-
tained. A transfer matrix calculation@17# resulted in s0
50.0701(5). By using a Pfaffian method,s050.0704(2)
@18#, respectively,s050.0709(4) @19# was obtained. The
most recent values are smaller than the entropy found in
paper. The reason may be that larger systems could

FIG. 4. NumbernC of ground-state clusters for two-dimension
6J spin glasses as a function of system sizeN. The inset shows the
same data using a double-logarithmic scale. Lines are a guide t
eyes only.
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treated~up to L5256 in Refs.@18,19#!, while here an ex-
trapolation has been performed with systems of sizeL<20.
At least, the values0@L522#50.079(1) is comparable to
the value ofs0@L532#50.0780(8) found in Ref.@18#. Ad-
ditionally, the fact that for the other works the number
antiferromagnetic bonds fluctuates from sample to sam
while it is kept fixed here may have an influence as we
This was tested by calculating ground states for small s
tems (L<10), where each bond has a probability 0.5
being ~anti-! ferromagnetic. In this case the entropy turn
out to be 5–10 % below the values found above. For la
system sizes, which are out of range for the method p
sented here, this effect should decrease.

In the last part we turn to four-dimensional6J spin
glasses. Because of the huge computational effort,N564 is

he

FIG. 5. Average sizeV of a cluster as a function of averag
dynamic numberl max of free spins~see text! for two-dimensional
6J spin glasses of system sizesL55,7, where all ground have
been obtained. AV520.85l max dependence is found, indicated by
line.

FIG. 6. NumbernGS of ground states for two-dimensional6J
spin glasses as a function of system sizeN ~with a50.85).
The number of states grows exponentially with the number
spins. Line is a guide to the eyes only. The inset displays
ground-state entropy per spin as a function ofL. The line shows a fit
extrapolating s0 to the infinite system, which yieldss0(`)
50.078(5)kB .
6-5
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TABLE III. For each system sizeL (d54): numbernR of realizations, numberr of independent runs pe
realization, average numberC of clusters per realization, average ground-state degeneracynGS, and the
average entropy per spins0.

L nR r C nGS s0 /kB

3 1000 5000 2.99~9! 2.7(2)3102 0.0510~07!

4 455 5000 5.2~3! 9(1)3105 0.0394~07!

5 457 1000 9.9~5! 7(7)31014 0.0358~03!

6 10 100 15~4! 3(2)31020 0.0319~16!
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the largest size that could be considered and reasonable
tistics could be only obtained forL<5, since oneL56 run
takes several CPU weeks. For details, see Table III.

The number of clusters as a function ofN is displayed in
Fig. 7. Here, even more clusters seem to have been mi
than in the two- and three-dimensional cases. But again,
data basis is large enough that an exponential increase o
number of clusters seems possible; see Fig. 7

The dependence of the cluster size on the number of
of free spins could be studied only for the smallest syst
size. Even forL54, the number of ground states can gro
beyond 106, preventing a reliable analysis. From theL53
data~see Fig. 8! a50.93(3) has been estimated.

In the final figure ~Fig. 9! the resulting degeneracy i
shown. Here, the small numbers of ground states, wh
could be calculated with reasonable effort, already have
influence on the results. For the largest size, the expone
growth of the number of ground states with system size
not visible. Please note that in general the averagenGS is
dominated by few samples having a large number of gro
states. ForL56, because of the small number of realiz
tions, these realizations were not generated within
samples. This explains the deviation from the exponen
growth.

For the entropy~see inset of Fig. 9!, rare samples have
less influence since the logarithm of the number of state
averaged. Consequently, the value ofs050.027(5), which
again was obtained by a finite-size scaling fit, is much m
reliable.

FIG. 7. Number nC of ground-state clusters for four
dimensional6J spin glasses as a function of system sizeN. The
inset shows the same data using a double-logarithmic scale. L
are a guide to the eyes only.
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As we have seen, thea parameter increases with growin
dimension. That means that the spins contributing to
ground-state degeneracy become more and more inde
dent and the limita51 corresponds to the case where
free spins do not interact with each other. This can be und
stood from the decrease of the ground-state entropy. F
d52 to d54, s0 drops from 0.078 to 0.027. Thus, wit
growing dimension, the number of spins contributing to t
ground-state degeneracy decreases quickly, so it beco
less likely that these spins are neighbors. This effect is str
ger than the increase of the number of neighbors per s
from 4 in d52 to 8 in d54.

IV. CONCLUSION

True ground states of two-, three- and four-dimensio
6J spin glasses have been calculated using genetic clu
exact approximation. For each realization many independ
ground states have been obtained, leading to an enorm
computational effort; several months of running 32 Power
processors on a parallel computer were necessary. Clu
of ground states have been investigated, which are define
be the sets of ground-state configurations that can be
cessed from each other by flipping only free spins. T
ballistic-search method has been presented, which allows
fast identification of very large clusters. It can be assu
easily that the ground-state clusters found in this way h
been identified correctly. It should be pointed out that t
method is not a tool for thecalculation of ground states of
large systems, but it allows for a detailedanalysisof highly

es

FIG. 8. Average sizeV of a cluster as a function of averag
dynamic numberl max of free spins~see text! for four-dimensional
6J spin glasses of system sizesL53, where all ground have bee
obtained. AV520.93l max dependence is found, indicated by a line
6-6
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degenerate ground-state landscapes. Indeed, it is possib
calculate clusters of systems when only a small fraction
their states is available. The method should be extendab
similar clustering problems. A variant of the technique
used to estimate the size of clusters.

Ground-state clusters for systems of size up toL520
~2D!, L58 ~3D!, and L56 ~4D! have been calculated. I
means that, in the case of three dimensions, these realiza
are ten times larger and have 1012 times more ground state
than the systems treated in Ref.@2#. For the other dimension
similar studies have not even been performed before at
The number of clusters and the degeneracy as a functio
the number of spinsN were evaluated. It appears that bo

FIG. 9. NumbernGS of ground states for four-dimensional6J
spin glasses as a function of system sizeN ~with a50.93). The
number of states grows exponentially with the number of sp
Lines are a guide to the eyes only. The inset displays the grou
state entropy per spin as a function ofL. The line shows a fit
extrapolating s0 to the infinite system, which yieldss0(`)
50.027(5)kB .
ng

01610
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f
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quantities are growing exponentially withN for all three
casesd52,3,4. Consequently, it seems unlikely that ev
larger systems can be treated accordingly in the near fut
The ground-state entropy per spin was found to bes0
50.078(5)kB ~2D!, s050.051(1)kB ~3D!, respectively,s0
50.027(5)kB ~4D!. It should be stressed that the result f
the entropy does not depend on the way a cluster is defi
The specific definition given here is only a tool, which a
lows the treatment of systems exhibiting a huge ground-s
degeneracy. If ground states had colors, they could
grouped according their colors as well, instead of perform
a clustering according to their neighbor relationship.

With the method presented here, it is only possible
study the bottom level clustering of the ground states. I
not possible to find superstructures of the clusters. This k
of enhanced analysis can be performed with other meth
@25#. Even when applying these other techniques, the ba
tic search method is still necessary, since the cluster la
scape has to be obtained in advance. There, the balli
search clustering is applied to guarantee that a ground-s
landscape is sampled thermodynamically correct, see
Ref. @27#.
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