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A huge number of independent true ground-state configurations is calculated for two-, three- and four-
dimensional+J spin-glass models. Using the genetic cluster-exact approximation method, system sizes up to
N=20?,8%6 spins are treated. A “ballistic-search” algorithm is applied, which allows even for large system
sizes to identify clusters of ground states that are connected by chains of zero-energy flips of spins. The number
of clustersn¢ diverges withN going to infinity. For all dimensions considered here, an exponential increase of
nc appears to be more likely than a growth with a poweNofrhe number of different ground states is found
to grow clearly exponentially witiN. A zero-temperature entropy per spin §§=0.078(5kg (2D), sq
=0.051(3kg (3D), respectivelysy=0.027(5kg (4D) is obtained.
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I. INTRODUCTION figurations of the same energy. Currently, it seems to be
impossible to obtain all ground states for system sizes larger
Spin-glass model$1] with discrete distributions of the thanN=52. To overcome this problem in this work allus-
interactions are believed to exhibit a rich ground-stafe ( ters of ground states are calculated. A cluster is defined in
=0) landscape. So far only for very small systemsNof the following way: Two ground-state configurations are
=43 spins the complete landscape has been anal@eth  calledneighborsif they differ only by the orientation of one
this paper a new “ballistic search” algorithm is presented,free spin. All ground states that are accessible through this
which allows the treatment of much larger systems. As ameighbor relation are defined to be in the same cluster. This
application, two-, three-, and four-dimensional Edwards-means, one can travel through the ground states of one clus-
Anderson=J spin glasses are investigated. They consist oter by flipping only free spins. With the method presented
N spinso;=*1, described by the Hamiltonian here, theballistic search(BS), it is not only possible to ana-
lyze large ground-state clusters, it also allows to obtain the
1) cluster landscape when having only a small subset of all
ground states available. Additionally, one can estimate the
size of the clusters from this small number of sample states,
The sum runs over all pairs of nearest neighbors. Theis shown later on.
spins are placed od=2,3,4-dimensional simplésquare/ The number of clusters as a function of system size is also
cubic/hypercubig lattices of linear sizeL with periodic  of interest on its own: for the infinitely-ranged Sherrington-
boundary conditions in all directions. Systems with Kirkpatrik (SK) Ising spin glass a complex configuration-
quenched disorder of the interactioii®ndg are considered. space structure was found using the replica-symmetry-
Their possible values ak; =+ 1 with equal probability. To  breaking mean-fieldMF) scheme by Paridi5]. If the MF
reduce the fluctuations, a constraint is imposed, such thaicheme is valid for finite-dimensional spin glasses as well,
2ipyJij=0. Since the Hamiltonian exhibits no external then the number of ground-state clusters must diverge with
field, reversing all spins of eonfiguration(also calledstate increasing system size. On the other hand the droplet-scaling
{oi} results in a state with the same energy, calledithe picture[6—9] predicts that basically one ground-state cluster
verseof {o;}. In the following, a spin configuration and its (and its inversgdominates the spin-glass behavior. To ad-
inverse are regarded as one single state. dress this issue a cluster-analysis was performed for small
Since the ground-state problem belongs to the class afystems of one size=4 in three dimension§2]. But an
NP-hard taskq3], only algorithms with exponentially in- analysis of the size dependence of the number of clusters or
creasing running time are available. Currently it is possibleeven an investigation of two-/four-dimensional spin glasses
to obtain a finite number of true ground states per realizatiomas not been carried out before.
up toL=56 (2D), L=14(3D), or L=8 (4D) using a special By the way, with the method presented here it is possible
optimization algorithnj4]. For the*+ J model, the number of to calculate the entrop$,=[In nsgl;kg even for systems ex-
existing ground statesg s per realization, called thground-  hibiting a hugeT=0 degeneracy. The symbpl]; denotes
state degeneracygrows exponentially wittN. The reason is, the average over different realizations of the bonds. Since the
that there are usualliyee spins, i.e., spins that can be flipped number of free spins is extensivig=S,/N>0 holds for the
without changing the energy of the system. A state viith =J spin glass. For three-dimensional spin glassed,10]
independent free spins allows at least fdrdifferent con-  the ground-state entropy was estimated by computing exact
free energies for systems of siz&x4xXM (4=M=10). In
[11] a Monte-Carlo simulation and {12,13 multicanonical
*FAX: 4+59-551-399631. simulations were used to calculatg. Results for the
Email address: hartmann@theorie.physik.uni-goettingen.de ground-state entropy of two dimensional sys-
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TABLE I. For each system size (d=3): numbemg of realizations, number of independent runs per
realization, average numbé& of clusters per realization, average ground-state degenerggyand the
average entropy per spsy.

L Nng r C Ngs So/Kg

3 1000 1000 1.79®) 2.6(2)x 10" 0.084216)
4 1000 14 2.586) 2.1(1)x 10? 0.062709)
5 100 16 4.303) 1.3(4)x 10* 0.051918)
5 1000 3000 38) 2.1(3)x 10* 0.056@08)
6 1000 5000 6.8 1.3(3)x 10’ 0.053505)
8 192 2x 10 24(2) 1.8(1.7)x 10 0.052@07)

tem were obtained with similar methods: numerically exactHoshen-Kopelman techniqyi23], because each ground state
calculations of finite systemisl4,15, Monte-Carlo simula- is visited only once. Unfortunately the detection of all neigh-
tions[11,16 and analytics methodd7-19. For D=4 the  bors, which has to be performed at the beginning, is of
author is not aware of results for the ground-state entropy. O(née) since all pairs of states have to be compared. Even
The paper is organized as follows: First the proceduregyorse, all existing ground states must have been calculated

used in this paper are presented. Then the results for theafore. As, e.g., absystem may exhibit already more than
number of clusters and the number of ground states as fungp ground states, this algorithm is not suitable

tion of N in two, three, and four dimensions are shown. The

. ) The basic idea of the ballistic-search algorithm is to use a
last section summarizes the results.

test which tells whether two ground states are in the same
cluster. The test works as follows: Given two independent
replicas{o?} and{c”} let D be the set of spins, which are

At first the optimization method applied here is stated.different in both statesD={i|o{'# o’}. Now BS tries to
Then, for illustrating the problem, a simple method for con-build a path of successive flips of free spins, which leads
structing clusters of ground states is explained. In the maiffom {0} to {o”’} while using only spins fronD. In the
part the BS method for identifying clusters in systems exhib-simplest version iteratively a free spin is selected randomly
iting a huge degeneracy is presented and how this technigueom D, flipped, and removed fronD. This test does not
can be applied to estimate the size of these clusters is eguarantee to find a path between two ground states that be-
plained. long to the same cluster, since it may depend on the order the

The basic method used here for the calculation of spinspins are selected whether a path is found or not. It only finds
glass ground states is the cluster-exact approxim&@&»®)  a path with a certain probability that depends on the size of
algorithm[20], which is a discrete optimization method de- D. It turns out that the probability decreases monotonically
signed especially for spin glasses. In combination with a gewith |D|. For example folN=83 the method finds a path in
netic algorithm[21,22 this method is able to calculate true 90% of all cases if the two states differ by 34 spins. More
ground statef4]. Using this technique one does not encoun-analysis can be found in Rgi24].
ter ergodicity problems or critical slowing down like in al-  The algorithm for the identification of clusters using BS
gorithms that are based on Monte Carlo methods. Genetiworks as follows: the basic idea is to let a ground state rep-
CEA was already utilized to examine the ground states ofesent that part of a cluster that can be found using BS with
two-, three- and four dimensional J spin glasses by calcu- a high probability by starting at this ground state. If a cluster
lating a small number of ground states per realizafiéhh s large it has to be represented by a collection of states, such
while in this paper the emphasize is on the study of thehat the whole cluster is “covered.” For example a typical
cluster landscape. Therefore, many ground states per randottuster of a 8 spin glass consisting of #bground states is
sample have to be obtained. Since the algorithm calculategsually represented by only some few ground stéeeg.,
only one independent ground state per run, a much largéwo or threg. A detailed analysis of how many representing
computation effort was necessary. ground states are needed as a function of cluster and system

Once many ground states are calculated, the straighsize can be found in Refl24]. The algorithm holds in
forward method to obtain the cluster landscape works theénemory a set of clusters consisting each of a set of repre-
following way: The construction starts with one arbitrary senting configurations. At the beginning the cluster set is
ground state. All its neighbors are added to the cluster. Thesampty. lteratively all available ground stafes} are treated:
neighbors are treated recursively in the same way: All theifFor all representing configurations the BS algorithm tries to
neighbors that are yet not included in the cluster are addedind a path to the current ground state or to its inverse. If no
After the construction of one cluster is completed the con{ath is found, a new cluster is created, which is represented
struction of the next one starts with a ground state, which haby the actual configuration treated.{ld-} is found to be in
not been visited so far. exactly one cluster nothing special happengdif is found

The construction of the clusters needs only linear comio be in more than one cluster all these clusters are merged
puter time as function ohgg [O(ngg)], similar to the into one single cluster, which is now represented by the

Il. ALGORITHMS
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union of the states, which have represented all clusters af- 100 - - - - -
fected by the merge. 100 ‘
The BS identification algorithm has some advantages in
comparison with the straight-forward method: since each 10 (d= 1
ground-state configuration represents many ground states,
the method does not need to compare all pairs of states. Each

state is compared only to a few number of representing con-  © 10 | 1%
figurations. Thus, the computer time needed for the calcula-
tion grows only a little bit faster tha®(nggnc) [24], where
Nc is the number of clusters, which is much smaller than
nsg. Consequently, large sets of ground states, which appear
already for small system sizes liké=5%, can be treated.
Furthermore, the ground-state cluster landscape of even 1 . : ! : .
larger systems can be analyzed, since it is sufficient to cal- 0 100 200 300 400 500 600
culate a small number of ground states per cluster. One has N
to ensure that really all clusters are found, which is simply FIG. 1. Numbernc of ground-state clusters as a function of
done by calculating enough states, but this is still only a tinysystem sizeN for d=3. The inset shows the same data using a
fraction of all ground stategf4]. Also one has to be sure that double-logarithmic scale. Lines are a guide to the eyes only.
all clusters are identified correctly. This is not guaranteed
immediately, since for two ground states belonging to the |5 3D, for system sizes =3,4,5,6,8 large numbers of
same cluster there is just a certain probability that a path ofydependent ground states were calculated using genetic
free flipping spins connecting them is found. But this posesCEA, Usually 1000 different realizations of the disorder
no problem, because once at least one state of a cluster hggre considered. Table | shows the number of realizations
been found, many more states can be obtained easily by jugf, and the number of independent runper realization for
performing aT =0 Monte-Carlo simulation starting with the the gifferent system sizds For the small systems sizéand
initial state. By increasing the number of states availablgqyr 100 realizations of. =5) many runs plus an additional
more and more, the probability that all clusters have beefyca search were performed to calculaté ground states.
identified correctly very quickly approaches one. Detailedroy the |arger sizek =5,6,8 the number of ground states is
tests can be found in ReR4]. For all results presented here, 4 |arge, so it is only possible to try to calculate at least one
the number of available ground states has been increased ggyund state per cluster. It is highly probable that all clusters
far, such that each cluster has be identified correctly with gere detected, except ftr=8, where for about 25% of the
probability of more than 0.99. , realizations some small cluster may have been mi§2éH
~Once all ground states are grouped into clusters, theifhis problem is not related to the design of the ballistics
sizes have to be obtained to calculate the total number &fearch method. It is due to the enormous computational ef-
states and the entropy. If only some ground states per clustgit needed for generating the ground states of the largest
are available, the size can.not be eva!uated by simply Cour_‘E'ystems, so only a restricted number of runs can be per-
ing the states. Then a variant of BS is used to perform thigomed. Since the probability that a certain cluster is found in

task. Given a statfo}, free spins are flipped iteratively, but 5 ryn of the genetic CEA algorithm decreases with the size of
each spin not more than once. During the iteration, additional

free spins may be generated or destroyed. When there are no
more free spins left, the process stops. One counts the num-
ber of spins that has been flipped. By averaging over several
tries and several ground states of a cluster one obtains an 10°
average value, denoted with,,. It can be shown that this

guantity represents the sirg of a cluster very well and is 10°
more accurate than simpler measures such as the average
number of static free spins. By analyzing all ground states of
small systems, anc=2%max behavior is found, witha
€[0.85,0.93 depending on the dimension of the system.
These results will be exposed in the next section. A similar 10'
method for estimating the cluster sizes is presented in Ref.

[25]. There three heuristic fitting parameters are needed, but 10° &2
they are universal for all system dimensions.

d=3

10°

20

. RESULTS FIG. 2. Average size/ of a cluster i=3) as a function of
average dynamic numbdy,,, of free spins(see text for three-
First, the results for three-dimensional systems are givergimensional+J spin glasses of system sizes=3,4,5, where all
In the second and third part, two- and four-dimensional spirground have been obtained.\A= 2°%9max dependence is found, in-
glasses are investigated. dicated by a line.
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the cluster[26], ground states belonging to small clusters ' ' ' ' '
occur only rarely. Even by doubling the number of runs for 10
L =8, the fraction of systems with some clusters missed is
estimated to fall only to 20%.

The ground states were grouped into clusters using the
ballistic-search algorithm. The number of states per cluster
was sufficiently large, so that only with a probability of less
than 102 some configurations from a large cluster may be
mistaken for belonging to different clustel24]. The aver-
age numben¢ of clusters is shown in the fourth column of
Table I. In Fig. 1 the result is shown as a function of the
numberN of spins. By visualizing the results using a double- ,
logarithmic plot (see inset one realizes thahe seems to 0 100 200 300 200 500 600
grow faster than any power df. The larger slope in the N
linear-logarithmic plot for small systems may be a finite-size
effect. Additionally, forL =8 there is a large probability that ~ FIG. 3. Numbemgs of ground statesd=3) as a function of
some small clusters are missed, explaining the smaller slop@/stem sizeN. The number of states grows exponentially with the
there. In summary, our data favor an exponential increase dyumber of spins. Line is a guide_ to the eyes _onIy. The_inset displays
ne(N). the ground-state entropy per spin as a functioh.dfhe line shows

To calculate the ground-state entropy, the size of the clug? fit extrapolatings, to the infinite system, which yieldsy(<)

ters have to be known. For the small systems, this can be 0.0505(6 ks -

done just by counting. For larger system sizes it is not possyits obtained here. This may indicate that not all ground
sible to obtain all states, so the method using the dynamicaltates are found using that simulation procedure.
numberl . of free spins is applied, as explained before. In  The result for the entropy does not suffer from the fact,
Fig. 2 the cluster size for small systems is shown as a functhat some ground-state clusters may have been missed for
tion of I, with a logarithmically scaled y axis. A L=8: the probability for finding a cluster using genetic CEA
nc=2%ma dependence is visible very well, yielding grows with the size of the clust¢26]. This implies that the
a=0.905). clusters, which may have been missed, are considerably
By summing up all cluster sizes for each realization thesmall, so the influence on the result is negligible. The largest
ground-state degeneraaygs is obtained. Its average is source of uncertainty is caused by the assumption, that the
shown in the fifth column of the table. The quantity is plottedsize of a cluster grows like ®max The error of the constant
in Fig. 3 as a function oN. The exponential growth is ob- « enters linearly the result of the entropy. To estimate the
vious. influence of this approximation, for the three smallest sys-
The result for the average ground-state entropy per spin ilems sizes, where the entropy was obtained exasglyyas
shown in the last column of Table I. The numberor4 is  calculated using estimated cluster sizes as well. For all three
within two standard deviations af;=0.073(7 kg, which  cases the result was equal to the exact values within error
was found in Ref[2], where 200 realization were treated. By bars. The final result quoted heresg=0.0511).
fitting a function of the formsy(L) =sy(*) +a*L~# a value Now we concentrate on two-dimensional systems. For
of sy(0)=0.0505(6kg is obtained. In Ref. [10] system sizet =5,7,10,14,20 large numbers of independent
so=0.04(1kg was estimated for systems with periodic ground states were calculated using genetic CEA, up fo 10
boundary conditions only in two directions, which may beruns per realization were performed. Usually 1000 different
the reason for the smaller result. The value found by aealizations of the disorder were considered, exceptlLfor
Monte-Carlo simulatiors,=0.06Xg [11] for systems of size =20, where only 96 realizations could be treated. For the
20% is much larger. The deviation is presumably caused bymall systems sizek=5,7, many runs plus an additional
the fact that it was not possible to obtain true ground statebcal search were performed to calculaié ground states.
for systems of that size, i.e., too many states were found. ThEor the larger sizek =10,14,20 the number of ground states
results from multicanonical simulatiosg=0.046(2kg [12] is too large, so we restrict ourselves to calculate at least one
andsy=0.0441(5kg [13] are a little bit lower than the re- ground state per cluster. The probability that some clusters

TABLE II. For each system size (d=2): numbemg of realizations, numbaer of independent runs per
realization, average numb& of clusters per realization, average ground-state degenerggy and the
average entropy per spsy.

L ng r C Ngs So/kg

5 1000 1000 1.7®) 3.2(2)x 10t 0.104117)
7 1000 10 2.596) 5.4(5)x 107 0.091613)
10 1000 16 4.33) 7.6(4)X10° 0.086810)
14 1000 3000 3@) 1.5(9)x 10" 0.086307)
20 96 5000 6.68) 5.1(4.9)x 10%° 0.085420)
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10°

0 100 200 300 400
N [

FIG. 4. Numbem of ground-state clusters for two-dimensional FIG. 5. Average siz&/ of a cluster as a function of average
+J spin glasses as a function of system siz&he inset shows the - gynamic numbet ,,, of free spins(see text for two-dimensional
same data using a double-logarithmic scale. Lines are a guide to the j spin glasses of system sizés=5,7, where all ground have
eyes only. been obtained. A/=2%83max dependence is found, indicated by a

line.
were missed is higher for two dimensions than for the
=3 case, because the ground-state degeneracy grows fasteyated(up to L =256 in Refs.[18,19), while here an ex-
with the system size; for small systems sizes 10, it is  trapolation has been performed with systems of &ize20.
again highly probable that all clusters have been obtainedAt least, the valuesy[L=22]=0.079(1) is comparable to
For L=14 some small clusters may have been missed fothe value ofsy[ L=32]=0.0780(8) found in Refl18]. Ad-
about 30% of all realizations, while fdr=20 this fraction ditionally, the fact that for the other works the number of
raises even to 60%. This is due to the enormous computantiferromagnetic bonds fluctuates from sample to sample
tional effort needed for the largest systems. For lthe20  while it is kept fixed here may have an influence as well.
realizations a total computing time of more than 2 CPU yeard his was tested by calculating ground states for small sys-
was consumed on a cluster of Power-PC processors runnirigms (=<10), where each bond has a probability 0.5 of
with 80 MHz. being (anti-) ferromagnetic. In this case the entropy turned

The results fod=2 are shown in Table Il. The number of out to be 5-10 % below the values found above. For large
clustersnc as a function of system size is plotted in Fig. 4. system sizes, which are out of range for the method pre-
Again it is more likely thain has exponential growth rather sented here, this effect should decrease.
than algebraic growth. In the last part we turn to four-dimensionatJ spin

Similar to thed=3 case, the cluster sizdscan be ob- glasses. Because of the huge computational effort6* is
tained directly for small systems. For estimativign larger
systems, again the parameter has been obtained. The av- - - - -
erage size of a cluster as a functionl gf,, is shown in Fig.

5 resulting ina=0.855). With this parameter the ground-
state degeneracy as a function Mfcan be calculated, see
Fig. 6. Similar to thed=3 case, the exponential growth is
obvious. The resulting entropy is shown in the inset. By a
finite-size extrapolation to the infinite system, a valuesgpf
=0.078(5) is obtained. In Refl14] s;=~0.07%g was esti-
mated by using a recursive method to obtain numerically
exact free energies up to=18. The result ofsy~0.07%z
found in Ref.[15] is even slightly lower. The value found by
a Monte Carlo simulatiosy~0.1kg [11] for systems of size
80%, is much larger. The deviation is presumably caused by , . ,
the fact that it was not possible to obtain true ground states 0 100 200 300 400
for systems of that size, i.e., too many states were visited. N

Recent results are more accurate; by applying the replica g 6. Numbemgs of ground states for two-dimensionalJ
Monte Carlo method16] a value ofsy=0.071(7) was ob-  gpin glasses as a function of system sige(with a=0.85).
tained. A transfer matrix calculatiofl7] resulted inSy  The number of states grows exponentially with the number of
=0.070%5). By using a Pfaffian methods,=0.0704(2)  spins. Line is a guide to the eyes only. The inset displays the
[18], respectively,so=0.0709(4)[19] was obtained. The ground-state entropy per spin as a functioh.oThe line shows a fit
most recent values are smaller than the entropy found in thiextrapolating s, to the infinite system, which vyieldssy(«)
paper. The reason may be that larger systems could be0.078(5kg.

10° L
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TABLE Ill. For each system sizk (d=4): numbemg, of realizations, numbaer of independent runs per
realization, average numb& of clusters per realization, average ground-state degenerggy and the
average entropy per spsy.

L Ng r C Ngs So/kg

3 1000 5000 2.99) 2.7(2)x 1% 0.051G07)
4 455 5000 5.8) 9(1)x1C° 0.039407)
5 457 1000 9.6) 7(7)x10% 0.035803)
6 10 100 184) 3(2)x 107 0.031916)

the largest size that could be considered and reasonable sta-As we have seen, the parameter increases with growing
tistics could be only obtained fdr<5, since oned.=6 run  dimension. That means that the spins contributing to the
takes several CPU weeks. For details, see Table Ill. ground-state degeneracy become more and more indepen-
The number of clusters as a functionNdfis displayed in  dent and the limita=1 corresponds to the case where all
Fig. 7. Here, even more clusters seem to have been missé@e spins do not interact with each other. This can be under-
than in the two- and three-dimensional cases. But again, thétood from the decrease of the ground-state entropy. From
data basis is large enough that an exponential increase of tfe=2 to d=4, s drops from 0.078 to 0.027. Thus, with
number of clusters seems possible; see Fig. 7 growing dimension, the number of spins contributing to the
The dependence of the cluster size on the number of flipgfound-state degeneracy decreases quickly, so it becomes
of free spins could be studied only for the smallest systemSS likely that these spins are neighbors. This effect is stron-
size. Even forL=4, the number of ground states can grOWger than the increase of the number of neighbors per spin

beyond 16, preventing a reliable analysis. From the=3 from 4 ind=2 to 8 ind=4.
data(see F_ig. 3 a:O.93'(3) has been egtimated. . V. CONCLUSION

In the final figure(Fig. 9 the resulting degeneracy is _ _
shown. Here, the small numbers of ground states, which True ground states of two-, three- and four-dimensional
could be calculated with reasonable effort, already have artJ spin glasses have been calculated using genetic cluster-
influence on the results. For the largest size, the exponentigxact approximation. For each realization many independent
growth of the number of ground states with system size iground states have been obtained, leading to an enormous
not visible. Please note that in general the avenaggis  computational effort; several months of running 32 PowerPC
dominated by few samples having a large number of groungrocessors on a parallel computer were necessary. Clusters
states. FolL=6, because of the small number of realiza- 0f ground states have been investigated, which are defined to
tions, these realizations were not generated within 1de the sets of ground-state configurations that can be ac-
samples. This explains the deviation from the exponentiateéssed from each other by flipping only free spins. The
growth. ballistic-search method has been presented, which allows the

For the entropy(see inset of Fig. 9 rare samples have fast identification of very large clusters. It can be assured
less influence since the logarithm of the number of states igasily that the ground-state clusters found in this way have
averaged. Consequently, the valuesgt=0.02715), which  been identified correctly. It should be pointed out that this
again was obtained by a finite-size scaling fit, is much morénethod is not a tool for thealculation of ground states of

reliable. large systems, but it allows for a detailadalysisof highly
1000 : T 10° : T
1000
d=4
100 E 10* k d
d- oL=3

100 | 10 J‘I 3 1 .

1

10 100 1000 10000

Ng

py
o
©

0 500 1000 1500 0 5 10 15
N |k

FIG. 7. Number nc of ground-state clusters for four- FIG. 8. Average size/ of a cluster as a function of average
dimensional*J spin glasses as a function of system dizeThe dynamic numbet ,,,, Of free spins(see text for four-dimensional
inset shows the same data using a double-logarithmic scale. LinesJ spin glasses of system sizes- 3, where all ground have been
are a guide to the eyes only. obtained. AV=2%%max dependence is found, indicated by a line.

016106-6



GROUND-STATE CLUSTERS OF TWO-, THREE-, AND. ..

0 500 1000 1500

N

FIG. 9. Numbemgg of ground states for four-dimensionzlJ
spin glasses as a function of system shtéwith «=0.93). The

number of states grows exponentially with the number of spin
Lines are a guide to the eyes only. The inset displays the groun

state entropy per spin as a function lof The line shows a fit
extrapolating s, to the infinite system, which yieldssy()
=0.027(5Kg .
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quantities are growing exponentially witN for all three
casesd=2,3,4. Consequently, it seems unlikely that even
larger systems can be treated accordingly in the near future.
The ground-state entropy per spin was found to d3e
=0.078(5kg (2D), sp=0.051(1kg (3D), respectively,s,
=0.027(5kg (4D). It should be stressed that the result for
the entropy does not depend on the way a cluster is defined.
The specific definition given here is only a tool, which al-
lows the treatment of systems exhibiting a huge ground-state
degeneracy. If ground states had colors, they could be
grouped according their colors as well, instead of performing
a clustering according to their neighbor relationship.

With the method presented here, it is only possible to
study the bottom level clustering of the ground states. It is
not possible to find superstructures of the clusters. This kind
of enhanced analysis can be performed with other methods
[25]. Even when applying these other techniques, the ballis-

cﬂc search method is still necessary, since the cluster land-

Scape has to be obtained in advance. There, the ballistic-
search clustering is applied to guarantee that a ground-state
landscape is sampled thermodynamically correct, see also
Ref. [27].

degenerate ground-state landscapes. Indeed, it is possible to

calculate clusters of systems when only a small fraction of
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